extension | φ:Q→Out N | d | ρ | Label | ID |
(C5xQ8).1C23 = C2xSD16:D5 | φ: C23/C2 → C22 ⊆ Out C5xQ8 | 160 | | (C5xQ8).1C2^3 | 320,1432 |
(C5xQ8).2C23 = C2xSD16:3D5 | φ: C23/C2 → C22 ⊆ Out C5xQ8 | 160 | | (C5xQ8).2C2^3 | 320,1433 |
(C5xQ8).3C23 = D20.29D4 | φ: C23/C2 → C22 ⊆ Out C5xQ8 | 80 | 4 | (C5xQ8).3C2^3 | 320,1434 |
(C5xQ8).4C23 = C2xD5xQ16 | φ: C23/C2 → C22 ⊆ Out C5xQ8 | 160 | | (C5xQ8).4C2^3 | 320,1435 |
(C5xQ8).5C23 = C2xQ16:D5 | φ: C23/C2 → C22 ⊆ Out C5xQ8 | 160 | | (C5xQ8).5C2^3 | 320,1436 |
(C5xQ8).6C23 = C2xQ8.D10 | φ: C23/C2 → C22 ⊆ Out C5xQ8 | 160 | | (C5xQ8).6C2^3 | 320,1437 |
(C5xQ8).7C23 = D20.30D4 | φ: C23/C2 → C22 ⊆ Out C5xQ8 | 160 | 4 | (C5xQ8).7C2^3 | 320,1438 |
(C5xQ8).8C23 = D5xC4oD8 | φ: C23/C2 → C22 ⊆ Out C5xQ8 | 80 | 4 | (C5xQ8).8C2^3 | 320,1439 |
(C5xQ8).9C23 = Q16:D10 | φ: C23/C2 → C22 ⊆ Out C5xQ8 | 80 | 4 | (C5xQ8).9C2^3 | 320,1440 |
(C5xQ8).10C23 = D8:15D10 | φ: C23/C2 → C22 ⊆ Out C5xQ8 | 80 | 4+ | (C5xQ8).10C2^3 | 320,1441 |
(C5xQ8).11C23 = D8:11D10 | φ: C23/C2 → C22 ⊆ Out C5xQ8 | 80 | 4 | (C5xQ8).11C2^3 | 320,1442 |
(C5xQ8).12C23 = D20.47D4 | φ: C23/C2 → C22 ⊆ Out C5xQ8 | 160 | 4- | (C5xQ8).12C2^3 | 320,1443 |
(C5xQ8).13C23 = SD16:D10 | φ: C23/C2 → C22 ⊆ Out C5xQ8 | 80 | 8- | (C5xQ8).13C2^3 | 320,1445 |
(C5xQ8).14C23 = D8:5D10 | φ: C23/C2 → C22 ⊆ Out C5xQ8 | 80 | 8+ | (C5xQ8).14C2^3 | 320,1446 |
(C5xQ8).15C23 = D8:6D10 | φ: C23/C2 → C22 ⊆ Out C5xQ8 | 80 | 8- | (C5xQ8).15C2^3 | 320,1447 |
(C5xQ8).16C23 = D5xC8.C22 | φ: C23/C2 → C22 ⊆ Out C5xQ8 | 80 | 8- | (C5xQ8).16C2^3 | 320,1448 |
(C5xQ8).17C23 = D40:C22 | φ: C23/C2 → C22 ⊆ Out C5xQ8 | 80 | 8+ | (C5xQ8).17C2^3 | 320,1449 |
(C5xQ8).18C23 = C40.C23 | φ: C23/C2 → C22 ⊆ Out C5xQ8 | 80 | 8+ | (C5xQ8).18C2^3 | 320,1450 |
(C5xQ8).19C23 = D20.44D4 | φ: C23/C2 → C22 ⊆ Out C5xQ8 | 160 | 8- | (C5xQ8).19C2^3 | 320,1451 |
(C5xQ8).20C23 = C2xC20.C23 | φ: C23/C22 → C2 ⊆ Out C5xQ8 | 160 | | (C5xQ8).20C2^3 | 320,1480 |
(C5xQ8).21C23 = C22xC5:Q16 | φ: C23/C22 → C2 ⊆ Out C5xQ8 | 320 | | (C5xQ8).21C2^3 | 320,1481 |
(C5xQ8).22C23 = C2xD4.8D10 | φ: C23/C22 → C2 ⊆ Out C5xQ8 | 160 | | (C5xQ8).22C2^3 | 320,1493 |
(C5xQ8).23C23 = C20.C24 | φ: C23/C22 → C2 ⊆ Out C5xQ8 | 80 | 4 | (C5xQ8).23C2^3 | 320,1494 |
(C5xQ8).24C23 = C2xD4.9D10 | φ: C23/C22 → C2 ⊆ Out C5xQ8 | 160 | | (C5xQ8).24C2^3 | 320,1495 |
(C5xQ8).25C23 = D20.32C23 | φ: C23/C22 → C2 ⊆ Out C5xQ8 | 80 | 8+ | (C5xQ8).25C2^3 | 320,1507 |
(C5xQ8).26C23 = D20.33C23 | φ: C23/C22 → C2 ⊆ Out C5xQ8 | 80 | 8- | (C5xQ8).26C2^3 | 320,1508 |
(C5xQ8).27C23 = D20.34C23 | φ: C23/C22 → C2 ⊆ Out C5xQ8 | 80 | 8+ | (C5xQ8).27C2^3 | 320,1509 |
(C5xQ8).28C23 = D20.35C23 | φ: C23/C22 → C2 ⊆ Out C5xQ8 | 160 | 8- | (C5xQ8).28C2^3 | 320,1510 |
(C5xQ8).29C23 = C2xQ8.10D10 | φ: C23/C22 → C2 ⊆ Out C5xQ8 | 160 | | (C5xQ8).29C2^3 | 320,1617 |
(C5xQ8).30C23 = C2xD4.10D10 | φ: C23/C22 → C2 ⊆ Out C5xQ8 | 160 | | (C5xQ8).30C2^3 | 320,1620 |
(C5xQ8).31C23 = C10.C25 | φ: C23/C22 → C2 ⊆ Out C5xQ8 | 80 | 4 | (C5xQ8).31C2^3 | 320,1621 |
(C5xQ8).32C23 = D20.37C23 | φ: C23/C22 → C2 ⊆ Out C5xQ8 | 80 | 8- | (C5xQ8).32C2^3 | 320,1623 |
(C5xQ8).33C23 = D5x2- 1+4 | φ: C23/C22 → C2 ⊆ Out C5xQ8 | 80 | 8- | (C5xQ8).33C2^3 | 320,1624 |
(C5xQ8).34C23 = D20.39C23 | φ: C23/C22 → C2 ⊆ Out C5xQ8 | 80 | 8+ | (C5xQ8).34C2^3 | 320,1625 |
(C5xQ8).35C23 = Q16xC2xC10 | φ: C23/C22 → C2 ⊆ Out C5xQ8 | 320 | | (C5xQ8).35C2^3 | 320,1573 |
(C5xQ8).36C23 = C10xC4oD8 | φ: C23/C22 → C2 ⊆ Out C5xQ8 | 160 | | (C5xQ8).36C2^3 | 320,1574 |
(C5xQ8).37C23 = C10xC8.C22 | φ: C23/C22 → C2 ⊆ Out C5xQ8 | 160 | | (C5xQ8).37C2^3 | 320,1576 |
(C5xQ8).38C23 = C5xD8:C22 | φ: C23/C22 → C2 ⊆ Out C5xQ8 | 80 | 4 | (C5xQ8).38C2^3 | 320,1577 |
(C5xQ8).39C23 = C5xD4oD8 | φ: C23/C22 → C2 ⊆ Out C5xQ8 | 80 | 4 | (C5xQ8).39C2^3 | 320,1578 |
(C5xQ8).40C23 = C5xD4oSD16 | φ: C23/C22 → C2 ⊆ Out C5xQ8 | 80 | 4 | (C5xQ8).40C2^3 | 320,1579 |
(C5xQ8).41C23 = C5xQ8oD8 | φ: C23/C22 → C2 ⊆ Out C5xQ8 | 160 | 4 | (C5xQ8).41C2^3 | 320,1580 |
(C5xQ8).42C23 = C10x2- 1+4 | φ: trivial image | 160 | | (C5xQ8).42C2^3 | 320,1633 |
(C5xQ8).43C23 = C5xC2.C25 | φ: trivial image | 80 | 4 | (C5xQ8).43C2^3 | 320,1634 |